设为首页 电子邮箱 联系我们

本刊网站已开通,欢迎作者、读者使用访问本网站!

 
   
首 页 最新公告 杂志介绍 征稿启事 投稿须知 期刊目录 期刊收录 在线投稿 联系方式
  版权信息

主      办:中国国际教育学会
协      办:世界科学教育出版社
            教育文献出版社
编      辑:教育研究学刊杂志
            编辑部
名誉总编辑:吴康辉
副  主  编:佘维学  薛慧锋
            钱水龙  叶建强
            朱 淮  许国华
外联部主任:刘长明  黎 欣
投稿  邮箱:jyyjxk@126.com
网      址:www.jyyjxk.com
定      价:每期8元,全年60元

 
  相关证书  
  友情链接  
·教育阅读网
·华夏期刊网
·新教师教学杂志官网
·中文科技期刊数据库
·中国科学院
  热门文章
首页 > 刊社动态 > 热门文章 
 
 
函数思想和模型思想在小学数学教学中的渗透 李 君
 
    

函数思想和模型思想在小学数学教学中的渗透              
辽宁省西丰县房木镇中心小学   李  君
 函数思想的本质在于建立和研究变量之间的对应关系。具体地说,函数思想体现于:认识到这个世界是普遍联系的,各个量之间总是有互相依存的关系。函数的核心就是“把握并刻画变化中的不变,其中变化的是‘过程’,不变的是‘规律’(关系)”。
 小学阶段如何渗透函数思想想呢?
 1.在探索“数与运算”的规律中渗透函数思想
 在人教版小学数学五年级上册第20页中安排了以下练习:算一算,填一填。有些老师让学生计算完毕、答案正确就满足了。假如我们以函数思想的高度来设计教学,则可以这样做:先计算,后核对答案,接着让学生观察所填答案有什么找规律,并思考这个特点是怎样引起的。然后再出现教科书第24页的如下练习,固然学生还没有学过一个数除以小数的计算方法,但可以根据前一题得到的规律加以解决。这种整合不光是能解决一两个练习的题目,而是让学生从中体会到“当一个数变化,另一个数不变时,得数变化是有规律的”这种朴素的函数思想,同时为六年级学习正、反比例做了很好的孕伏。这样做可以把商不变的性质、小数除法、正比例和反比例的相关知识串联起来,使知识脉络化,可以说是一举多得,而这种“得”归根到底是依靠于函数思想而实现的。
 2.在“空间与图形”领域的教学中渗透函数思想
 在学习了长方形与正方形周长和面积后我们可以设计“周长和面积”的练习课。课上设计这样的环节:用16根1厘米长的小棒围长方形或正方形,你能围出多少个?其中面积最大的是多少?并填写如下表格。学生经过研究可以得到:长7cm,宽1cm;长6cm,宽2cm;长5cm,宽3cm;长4cm,宽4cm(正方形)这四种长方形,其中正方形的面积最大。在研究过程中学生会渐渐地熟悉到:要想得到最大的面积,就要把所有的长方形逐一例举出来往比较;而要想得到不同的长方形,必须在保持周长不变的情况下改变长方形的长和宽,由于长逐渐地减小,在周长不变的情况下,宽必须跟随着不断地增大。这样就把“静态”的学习变成了“动态”的研究,而这种由“静”到“动”本身就是函数的本质。
 3.利用数目关系在解决实际题目中渗透函数思想
 学生在小学阶段学习和把握了很多的数目关系,如:单价、数目和总价之间的关系;路程、时间和速度的关系;工作量、工作效率和工作时间的关系……实在当这些数目关系中的某一种量固定后,另外两种量在变化时就构成了函数。以简单的解决题目来说,我们可以把封闭的题目改编成开放的题,如让学生根据所给的两个条件补一个题目,或给一个条件和题目,让学生补上另一个条件。例如,学校有120名学生排队做操,可以站几排?这看起来是很简单的一点儿变化,当把学生的各种补充条件汇集到一起时,学生就会熟悉到:可以站几排是随着每排人数的变化而变化着的;而每排的人数也会有一定限制,至少不会少于1人,至多不会超过120人。这个范围所蕴含的思想就是函数中的定义域和值域。我们看到这种开放不是简单形式上的开放,而是建立在函数思想上的有目的的开放。
 小学阶段如何渗透模型思想呢?
 分析与综合。分析与综合是重要的思维方式,同样是重要的数学方法,是学习数学过程中建立数学模型的重要途径之一。分析是对所获得的数学材料或数学问题的构成要素进行研究,把握各要素在整体中的作用,找出其内在的联系与规律,从而得出有关要素的一般化的结论的思维方式。综合是将对数学材料、数学问题的分析结果和各要素的属性进行整合,以形成对该队象的本质属性的总体认识的思维方法。
    2、比较与分类。比较是对有关的数学知识或数学材料,辨别它们的共同点与不同点。比较的目的是认识事物的联系与区别,明确彼此之间存在的同一性与相似性,以便揭示其背后的共同模型。分类是在比较的基础上,按照事物间性质的异同,将具有相同性质的对象归入一类,不同性质的对象归入另一类的思维方法。
 3、抽象与概括。抽象与概括是数学能力的核心要素之一,是形成概念、得出规律的关键性手段,因而,也是建立数学模型最为重要的思维方法。抽象是从许多数学事实或数学现象中,舍去个别的、非本质的属性,而抽出共同的本质的属性。概括则是把抽象出来的事物间的共同特征,归结出来,它以抽象为基础,是抽象过程的进一步发展。
 4、猜想与验证。猜想是对研究的数学对象或数学问题进行观察、实验、比较、归纳等一系列的思维活动,依据已有的材料或知识经验,做出符合一定规律或是式的推测性想象。猜想是一种带有一定直觉性的比较高级的思维方式,对于探索和发现性学习来说,猜想是一种重要的思维方法。学生在验证过程中,会发现新的问题,并在解决新问题的过程中,完善自己的猜想,发挥创造才能,最终发现规律。这样一个学习过程可以概括为:“实践操作----提出猜想----进行验证----自我反思----建立模型”,这不仅是一个主动学习的过程,更是发现学习、创新学习的过程。

                                                                                                       

 
 
 
 
 

教育研究学刊杂志 投稿邮箱:jyyjxk@126.com 

京ICP备09034123号